CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface
نویسندگان
چکیده
Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component "Recognition-Mediating-Function" design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.
منابع مشابه
Sialic Acid-Responsive Polymeric Interface Material: From Molecular Recognition to Macroscopic Property Switching
Biological systems that utilize multiple weak non-covalent interactions and hierarchical assemblies to achieve various bio-functions bring much inspiration for the design of artificial biomaterials. However, it remains a big challenge to correlate underlying biomolecule interactions with macroscopic level of materials, for example, recognizing such weak interaction, further transforming it into...
متن کاملOn the Transition from Static to Dynamic Boundary Friction of Lubricated PEEK for a Spreading Adhesive Contact by Macroscopic Oscillatory Tribometry
The tribology of lubricated poly(ether ether ketone) (PEEK)—steel tribosystems was investigated in the static and boundary friction regime. Pentaerythrite ester and trimellitic acid ester were used as lubricants. The lubricants differed in their molecular structure but showed only minor differences in their rheological and cohesive energetic properties. In order to investigate the effect of the...
متن کاملRate coefficients and kinetic isotope effects of the X + CH [ subscript 4 ] CH [ subscript 3 ] + HX ( X = H , D , Mu ) reactions from ring polymer molecular dynamics
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract The thermal rate coefficients and kinetic isotope effects have been calculated using ring polymer molecular dynamics (RPMD) for the prototypical reactions between methane and several hydrogen isotopes (H, D, and Mu). The excellent agreement with the theoretical rate co...
متن کاملSimulation of Stimuli-Responsive Polymer Networks
The structure and material properties of polymer networks can depend sensitively on changes in the environment. There is a great deal of progress in the development of stimuli-responsive hydrogels for applications like sensors, self-repairing materials or actuators. Biocompatible, smart hydrogels can be used for applications, such as controlled drug delivery and release, or for artificial muscl...
متن کاملMolecular-scale Hydrophilicity Induced by Solute: Molecular-thick Charged Pancakes of Aqueous Salt Solution on Hydrophobic Carbon-based Surfaces
We directly observed molecular-thick aqueous salt-solution pancakes on a hydrophobic graphite surface under ambient conditions employing atomic force microscopy. This observation indicates the unexpected molecular-scale hydrophilicity of the salt solution on graphite surfaces, which is different from the macroscopic wetting property of a droplet standing on the graphite surface. Interestingly, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015